This discussion paper is/has been under review for the journal Drinking Water Engineering and Science (DWES). Please refer to the corresponding final paper in DWES if available.

Fluoride in the drinking water of Pakistan and the possible risk of crippling fluorosis

M. A. Tahir and H. Rasheed

Pakistan Council of Research in Water Resources, Kheyaban-e-Johar, H-8/1, Islamabad, Pakistan

Received: 3 February 2012 – Accepted: 7 February 2012 – Published: 7 September 2012

Correspondence to: M. A. Tahir (pcrwr2005@yahoo.com)

Published by Copernicus Publications on behalf of the Delft University of Technology.

DWESD

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

5, 495–514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusion

References

Tables

Figures

I◀

Full Screen / Esc

Printer-friendly Version

To explore the possibility of fluoride toxicity, seven hundred and forty seven (747) water samples were collected from surface and ground water sources of sixteen major cities of Pakistan, adopting a uniform sampling design with distribution of samples s as: Lahore (79), Kasur (46), Faisalabad (30), Khushab (50), Chakwal (51), Mianwali (30), Jhelum (53), Bahawalpur (60), Karachi (60), Mirpur Khas (55), Peshawar (38), Risalpur (35), Quetta (81), Ziarat (21), Loralai (21), Mastung (37). The comparison of analytical findings with WHO Guidelines of Drinking Water for Fluoride (i.e. 1.5 ppm) has concluded that 16% of the monitored water sources have fluoride concentration beyond the permissible, safe limit of 1.5 mg l⁻¹, falling in the concentration range of 1.6– 25 mg l⁻¹. The highest fluoride contamination (22 %) has been detected in the Balochistan province followed by 19 % in Punjab province. Comparatively higher fluoride levels of >20% in groundwater sources such as hand pumps has supported the possibility of increased ground water contamination, as excessive fluoride concentrations are expected to come from calcium-poor aquifers and from areas where fluoride-bearing minerals are common or where cation exchange of sodium for calcium occurs. Field observations have also indicated the prevalence of fluoride-associated health implications in the study areas with excessive fluoride in water sources. The findings in this study have provided a bidirectional vision for epidemiological investigations as well as for mitigating the issues in the affected vicinities of fluoride-rich areas.

1 Introduction

Per capita water availability in Pakistan has decreased from 5000 m³ per annum in 1951 to 1100, which is just above the internationally recognized scarcity rate. It is projected that water availability will be less than 700 m³ per capita by 2025 (Pak-SCEA, 2006). Recent estimations of the availability and use of groundwater of an acceptable quality have also indicated the heavy over-exploitation of water resources, resulting in

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

DWESD

5, 495–514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstract

Introductio

Conclusion:

References

Tables

Figures

Figures

I₫

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

496

Discussion Paper

Tables

DWESD

5, 495-514, 2012

Fluoride in the drinking water of

Pakistan

M. A. Tahir and

H. Rasheed

Printer-friendly Version Interactive Discussion

the deteriorated quality as well as quantity of the groundwater (Pakistan Water Partnership, 2000). Findings of several studies conducted in the country to obtain an exact evaluation of the drinking water quality have disclosed the presence of a few potentially toxic substances in the groundwater with a higher concentration accelerated by human activities. The major reasons for poor water quality may be the untreated disposal of municipal and industrial effluents and the excessive use of fertilizers and insecticides. In addition, of the total diseases prevalent in the country, 40% are water borne and 20-40 % of hospitalizations are due to such water borne diseases (PCRWR, 2008). Therefore, considering the demand of the time, the Pakistan Council of Research in Water Resources (PCRWR) launched a National Water Quality Monitoring Programme (2001-2006) in the country and the findings of this mega water quality monitoring program for 23 major cities of Pakistan has revealed the prevalence of four major water quality tribulations, such as bacteriological contamination (68 %), arsenic (24 %), nitrate (13%) and fluoride (5%), in the surface or groundwater sources of Pakistan, specifically in the cities Kasur, Loralai, Quetta, Bahawalpur, Karachi, Faisalabad and Ziarat (Kahlown et al., 2001).

Fluoride is an important water quality parameter and has beneficial effects on the teeth at low concentrations in drinking-water. However, excessive exposure to fluoride in drinking-water or in combination with exposure to fluoride from other sources, can give rise to a number of adverse effects which may range from mild dental fluorosis to crippling skeletal fluorosis as the level and period of exposure increases. Many countries in the world especially Iraq, Iran, Syria, Turkey, India, Algeria, Morocco, the southern parts of the USA and former USSR have also reported higher fluoride concentration in their groundwater (Edmunds et al., 1996 and Mangla, 1991).

Ali et al. (2002) investigated the presence of fluoride in drinking water of Lahore city and found it to be within safe limits. However, adjoining areas like Mangamandi with higher fluoride concentrations in the water sources have also shown reported health effects in the form of dental and skeletal fluorosis among the natives due to excessive fluoride intake through drinking water (Ali et al., 2002). A similar case was reported in

the groundwater of Mastung valley in the Kalat division of Balochistan Province (K. Ali, unpublished data, 1999).

Considering the potential toxicity of higher fluoride concentration appearing as dental or skeletal fluorosis, the Pakistan Council of Research in Water Resources with financial assistance from United Nation's Children Education Funds (UNICEF) has carried out a detailed investigation on the prevalence of fluoride in drinking water sources of sixteen major suspected cities of Pakistan. The main objectives of the study were to authenticate the reported levels of fluoride and to review the possible associated health implications to be disseminated to implementing agencies in order to provide guidelines to the affected communities for locating alternate safe water sources.

2 Materials and methods

Seven hundred and forty seven (747) water samples were collected from various surface or groundwater sources such as hand pumps, tube wells, wells, nullahs, springs, dams, bores, and the water supply of sixteen major cities of the country on the basis of a grid size of $0.25\,\mathrm{km}^2$ for small cities, $9\,\mathrm{km}^2$ for medium cities, and $16\,\mathrm{km}^2$ for big cities as given in Table 1.

Following the grids on the city maps, one sample per grid was taken maintaining a distance of 0.5 or 1 km between two monitoring points. Replicating every fifth sample for quality control purposes, 298 samples were collected additionally to check the reliability and accuracy of the sampling and analytical procedures.

Following the Standard Methods, all the samples were collected in 1/2 liter polystyrene bottles and transported to laboratory in the least possible time (APHA-AWWA-WEF, 1992). Field information regarding sampling was recorded on the sampling proforma. All the samples were analyzed for fluoride (mg I⁻¹) using the SPANDS method recommended by Standard Methods based on the comparatively higher sensitivity and efficiency of the method (APHA-AWWA-WEF, 1992). A sample of blank, known fluoride standard and previously analyzed sample were analyzed after every

DWESD

5, 495–514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusions

References

Tables

Figuros

I a

►I

•

•

Back

Close

Full Screen / Esc

Printer-friendly Version

5.

DWESD

5, 495–514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusion

References

Tables

Figures

5

Dools

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Results and discussion

range of ±5% deviation from the actual analysis.

Analytical findings were compared with WHO Drinking Water Guideline value for fluoride which also considers the impact of climatic conditions, volume of water intake as well as fluoride intake from other sources (WHO, 2004). Thus, considering the annual average of maximum daily air temperature (84 °F) of Pakistan, the WHO guideline value for fluoride in the drinking water of Pakistan is considered as 1.5 mg l⁻¹. The citywise status of fluoride as a percentage of contamination out of total monitored sites of each city, is graphically reflected in Fig. 1. Mianawali city has shown the highest contamination level of 37 % in Punjab province, Mirpur Khas city (3.6 %) in Sindh Province, Quetta city (14 %) in Balochistan Province and Risalpur city (11 %) in North-West Frontier Province (NWFP).

ten samples to check the reproducibility of method and their results were found in the

Overall, only 16% of the total 747 samples were found to be unsafe, whereas the remaining 84% were declared to be safe. This overall distribution of Fluoride for 747 locations monitored in the selected 16 cities is shown as Fig. 2.

Table 2 provides details of quantitative summaries of each water quality variable, namely the minimum, maximum, median (middle value of the ordered data), mean, the first and third quartiles, Q1 and Q3 respectively (which are the 25th and 75th percentile values of the ordered data), the total number of observations recorded (Count). Comparing means and medians, we see that the means of Fluoride are substantially greater than their medians (except for Jhelum city). The distributions of the data for these variables are highly skewed to the right.

An overall comparison of four provinces indicated a higher percentage contamination in Balochistan Province followed by Punjab Province. The province-wise distribution is also given in Figs. 3–6 to provide an idea of the range of fluoride concentration within each province.

Discussion Pape

Printer-friendly Version

Interactive Discussion

The results of this perspective survey have finally led to recognition of the fact that fluoride is a considerable issue in quite a few places in Pakistan. Observations of the sampling team have also disclosed the possible signs and symptoms including Skeletal and Dental Fluorosis among the few individuals of the communities associated most probably to the excessive fluoride level in their drinking water. In the same way, deaths of the native people at locations with excessive fluoride due to an unknown chronic disease symptomized by bone and joint deformities have also been reported by teams of the World Health Organization (WHO) and other NGOs in the year 2000. Experts found prominent signs of "Dental Fluorosis" in the native areas, where the possibility of chronic fluoride toxicity was confirmed further by the epidemiological and laboratory investigation into the problem areas by a joint team of Pakistan Council of Research in Water Resources (PCRWR), World Health Organization (WHO), National Institute of Health (NIH), Federal Ministry of Health and Sindh Provincial Health Department in the vear 2005.

Fluoride is likely to produce Crippling Skeletal Fluorosis leading to Osteosclerosis. Ligamentous and Tendinous Calcification, hypersensitivity and other immunological effects (USNRC, 1993). In addition, fluoride has an effect on the kidneys, muscular and nervous system and there are some reports about the relationship between erythrocyte abnormalities and serum fluoride levels with excessive fluoride intake and therefore leading to death after prolonged illness. Prolonged exposure to 10-20 mg fluoride/person/day for 10-20 yr can lead to Crippling Skeletal Fluorosis, leading to Osteosclerosis, Ligamentous and Tendinous Calcification and extreme boney deformities (USNRC. 1993). Health impacts from long-term use of various ranges of fluoridated water have been summarized in Table 3.

Fluoride in drinking water increases the risk of hip fractures in women, as evidence has suggested that fluoride may be associated with some gender- dependent mechanisms or risk factors for hip fractures (Kurttio et al., 1999). A large number of epidemiological studies showed that fluoride is carcinogenic, a bone seeker and is associated with hip fractures and brittle bones (Yelena et al., 2001). It has also been found that DWESD

5, 495–514, 2012

Fluoride in the drinking water of **Pakistan**

> M. A. Tahir and H. Rasheed

Tables

Discussion Paper

Printer-friendly Version

Interactive Discussion

the crippling malady of fluorosis not only affects the bones and teeth, but every tissue and organ of the body, leading to death after prolonged illness (Susheela et al., 2001). USNRC has concluded that fluoride is likely to produce hypersensitivity and other immunological effects. Fluoride is mainly excreted from the kidneys (USNRC, 1993). Thus, it is reasonable that those with impaired renal function might be at greater risk of fluoride toxicity than others. However, there is much evidence that the amount of fluoride absorbed and retained by the body is mainly dependent on nutrition, especially for children. The study mentioned has clearly indicated that most of the water sources of the sixteen cities of the country are found free of the presence of excessive fluoride and therefore from the possibility of potential fluoride toxicity. In total, 16 locations have a fluoride level of >10 mg l⁻¹, which is suspected to cause cases of crippling fluorosis and needs detailed epidemiological study. The analytical findings of Balochistan and Punjab Provinces give rise to the prediction that fluoride is more commonly found in the groundwater as depicted graphically in Fig. 7. However, detailed monitoring of the contaminated regions and surroundings are highly recommended to formulate a mitigation strategy.

Most of the fluoride found in groundwater is naturally occurring from the breakdown of rocks and soils or weathering and deposition of atmospheric volcanic particles. Fluoride can also come from runoff and infiltration of chemical fertilizers in agricultural areas, septic and sewage treatment system discharges and liquid waste from industrial sources. Pakistan is an agricultural country and 96 % of its total water resources are being used by the agricultural sector, Fertilizer consumption has increased threefold during the past 30 yr in the country. It reached one million nutrient tonnes in 1980-1981, two million tonnes in 1992–1993 and three million tonnes in 2002–2003 and thus, may be an important contributing factor to increased fluoride contamination (FAO, 2007). Moreover, fluorides are found at significant levels in a wide variety of minerals, including fluorspar, rock phosphate, cryolite, apatite, mica, hornblende and others (Murray, 1986). Fluorite (CaF₂) is a common fluoride mineral of low solubility occurring in both igneous and sedimentary rocks. Rock phosphates are converted into phosphate

5, 495-514, 2012

Fluoride in the drinking water of **Pakistan**

DWESD

M. A. Tahir and H. Rasheed

Tables

14

fertilizers by the removal of up to 4.2 per cent fluoride (Murray, 1986). In ground waters, however, low or high concentrations of fluoride can occur, depending on the nature of the rocks and the occurrence of fluoride-bearing minerals. Concentrations in water are limited by fluorite solubility, so that in the presence of 40 mg l⁻¹ calcium, it should be limited to 3.1 mg l⁻¹ (Hem, 1989). Balochistan Province of Pakistan is rich in mineral deposits and diverse mineralogy and in this region, higher fluoride concentrations may therefore be expected in groundwater from calcium-poor aquifers and in areas where fluoride-bearing minerals are common. Fluoride concentrations may also increase in groundwater in which cation exchange of sodium for calcium occurs. High groundwater fluoride concentrations associated with igneous and metamorphic rocks such as granites and gneisses have been reported from India, Pakistan, West Africa, Thailand, China, Sri Lanka, and Southern Africa. In China, endemic fluorosis has been reported in all 28 provinces, autonomous regions and municipalities except Shanghai. Both shallow and deeper ground water are affected; in general the deeper ground waters have the higher concentrations. To cover up the gaps, institutional arrangements, capacity- building efforts, legislations and policy development with reference to water quality monitoring and surveillance activities as well as diagnosis and management of water related diseases are highly required to be managed in order to resolve water quality problems such as excessive fluoride and its possible health implications.

Acknowledgements. We would like to gratefully acknowledge the contributions of the technical and non-technical staff of the National Water Quality Laboratory, PCRWR, who were involved in sampling, laboratory analysis and coordination. The authors are grateful to Muhammad El-Feteh and Tameez Ahmad from the WES Programme, UNICEF Pakistan, for financial assistance for this study.

DWESD

5, 495–514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusion

References

Tables

Figures

Back

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Ali, A. K., Whelton, H., and O'Mullane, D.: A map of natural fluoride in drinking water in Pakistan,

References

30

Internat. Dent. J., 52, 291-297, 2002.

APHA-AWWA-WEF: Standard methods for the examination of water and wastewater, American public health association, American water works association and water environment federation, 18th Edn., Washington, DC, 1-33:4-82, 1992.

Edmunds, W. M. and Smedley, P. L.: Groundwater geochemistry and health: an overview, in: Environmental geochemistry and health, edited by: Appleton, J. D., Fuge, R., and McCall, G. J. H., Geological society special publication No. 113, 91–105, 1996.

FAO: The Fertilizer sector, in: FAO corporate document repository, http://www.fao.org/docrep/ 007/y5460e/y5460e07.htm#TopOfPage, last access: 15 December 2004, 2007.

Hem, J. D.: Study and interpretation of the chemical characteristics of natural water, Water Supply Paper 2254, 3rd Edn., US Geological Survey, Washington, D.C., 263 pp., 1989.

Kahlown, M. A., Tahir, M. A., and Hifza, R.: Water Quality Status of Pakistan, Pakistan Council of Research in Water Resources, Islamabad, Pakistan, Technical report Series 121-2006. 79-80, 2001.

Kurttio, P. N., Gustavsson, N., Vartiainen, T., and Pekkanen, J.: Exposure to natural fluoride in well water and hip fracture: A cohort analysis in Finland, Am. J. Epidemiol., 150, 817-824, 1999.

Mangla, B: India's dentists squeeze fluoride warnings off tubes, New Scientist, 131, p. 16, 1991. Murray, J. J.: Appropriate use of fluorides for human health, World Health Organization, Geneva, 1986.

Pak-SCEA: Pakistan; Strategic country environmental assessment report: Rising to the challenges, South Asian Development and Social Development Unit, the World Bank, 50 pp., 2006.

Pakistan Water Partnership: Framework for action for achieving the Pakistan water vision 2025, Islamabad, 2000.

Susheela, A. K., Das, T. K., Gupta, I. P., Tandon, R. K., Kacker, S. K., Ghosh, P., and Deka, R. C.: Fluoride ingestion and its correlation with gastro-intestinal discomfort, Journal Fluoride, 25, 7–12, 1992.

DWESD

5, 495–514, 2012

Fluoride in the

drinking water of

Pakistan

M. A. Tahir and

H. Rasheed

M

14

Printer-friendly Version

The Network for Consumer Protection in Pakistan and Action-aid Pakistan: Drinking water issues in Pakistan. A seminar on Drinking Water Issues in Pakistan 9th December 2003, Islamabad, Pakistan, 2002.

USNRC: US National Research Council, Health effects of Ingested fluoride, National academy press, Washington, D.C., 1993.

WHO: World Health Organization, Guideline for Drinking-Water Quality, second Edn., Vol. 2, Health criteria and other supporting information, World Health Organization, Geneva, 2004.

Yelena, V., Marina, T., Viktor, A., and Rein, M.: Fluoride in drinking water, Tallinn Technical University, Estonia, 2001.

DWESI

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstract

Introduction

onclusions

References

Tables

Figures

I₫

Full Screen / Esc

Printer-friendly Version

Table 1. Sampling criteria and number of samples collected from four provinces of the country.

Sr. No.	Province	City Grid Size (km²		No. of Sample	
1 Punjab		Lahore	3	79	
	-	Kasur	0.5	46	
		Faisalabad	3	30	
		Khushab	0.5	50	
		Chakwal	0.5	51	
		Mianwali	0.5	30	
		Jhelum	0.5	53	
		Bahawalpur	3	60	
2	Sindh	Karachi	4	60	
		Mirpur Khas	0.5	55	
3	North West Frontier	Peshawar	3	38	
	Province (NWFP)	Risalpur	0.5	35	
4	Balochistan	Quetta	1.5	81	
		Ziarat	0.5	21	
		Loralai	0.5	21	
		Mastung	0.5	37	
Grand Total	_	747			

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstract

Introductio

onclusions

References

Tables

Figures

I∢

Printer-friendly Version

Table 2. Basic statistics of fluoride in water sources of 16 cities.

Sr. No.	Cities	Count	Mean	SD	Min	<i>Q</i> 1	Median	<i>Q</i> 3	Max
1	Chakwal	51	1.02	0.60	0.00	0.59	0.76	1.49	2.63
2	Bahawalpur	60	0.67	0.67	0.15	0.30	0.53	0.74	4.58
3	Karachi	60	0.48	0.44	0.05	0.17	0.43	0.54	2.77
4	Mirpur Khas	55	0.74	0.48	0.00	0.28	0.81	1.06	1.80
5	Khushab	50	1.09	1.10	0.04	0.16	1.05	1.50	4.78
6	Mianwali	30	1.37	0.47	0.08	1.06	1.36	1.77	2.14
7	Kasur	46	1.11	0.84	0.35	0.54	0.81	1.47	4.10
8	Faisalabad	30	0.89	0.97	0.04	0.36	0.79	1.00	5.16
9	Lahore	79	2.62	4.46	0.05	0.26	0.51	1.76	19.70
10	Quetta	81	2.47	4.23	0.03	0.45	0.94	2.11	24.48
11	Ziarat	21	0.39	0.33	0.01	0.14	0.34	0.47	1.51
12	Loralai	21	1.08	0.38	0.08	0.88	1.04	1.18	1.86
13	Mastung	37	1.13	0.41	0.63	0.82	1.08	1.35	2.27
14	Jhelum	53	0.37	0.18	0.05	0.16	0.41	0.50	0.64
15	Peshawar	38	0.29	0.29	0.05	0.10	0.15	0.40	1.10
16	Risalpur	35	1.27	0.27	0.78	1.12	1.30	1.42	2.09

DWESD

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusion

References

Tables

Figures

I∢

Back

Full Screen / Esc

Printer-friendly Version

Table 3. Health impacts from long-term use of various ranges of fluoridated water.

$< 0.5 \mathrm{mg}\mathrm{l}^{-1}$	Dental caries
$0.5-1.5\mathrm{mgI}^{-1}$	Promotes dental health
1.5–4 mg l ^{–1}	Dental fluorosis
$> 4 \text{mg I}^{-1}$	Dental, skeletal fluorosis
$> 10 \text{mg I}^{-1}$	Crippling fluorosis

5, 495-514, 2012

Fluoride in the drinking water of **Pakistan**

M. A. Tahir and H. Rasheed

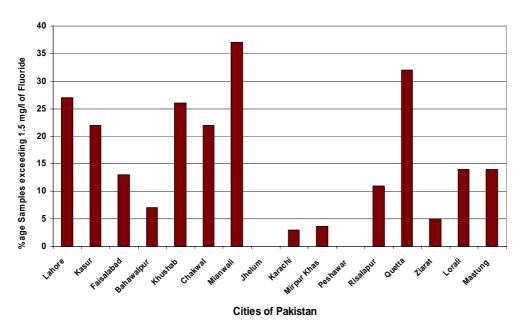


Fig. 1. Distribution of fluoride in sixteen cities of four provinces.

DWESI

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstract

Introduction

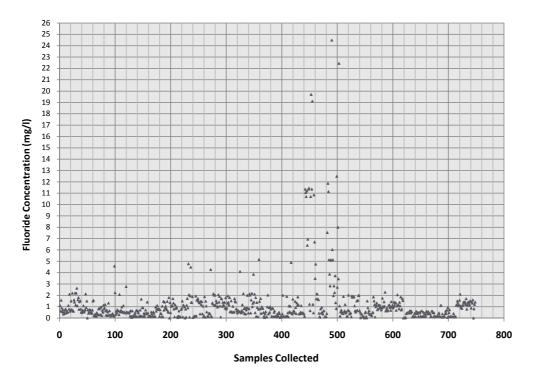
Conclusion

References

Tables

Figures

I∢



Full Screen / Esc

Printer-friendly Version

Fig. 2. Variation of fluoride concentration (mg l⁻¹) in the monitored sites.

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

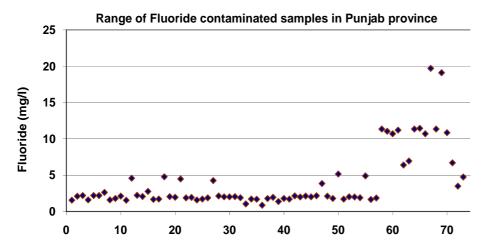
Introductio

Conclusion

References

Tables

Figures



Full Screen / Esc

Printer-friendly Version

Fig. 3. Range of fluoride contaminated samples ($>1.5 \,\mathrm{mg}\,\mathrm{l}^{-1}$) in Punjab Province.

DWESD

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

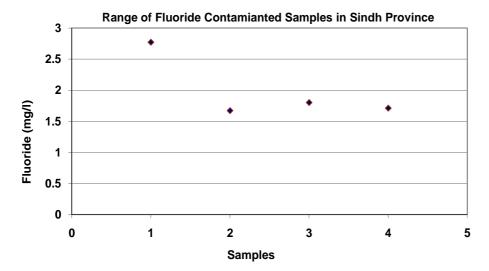
Conclusion

References

Tables

Figures

I∢



Full Screen / Esc

Printer-friendly Version

Fig. 4. Range of fluoride contaminated samples (>1.5 mg Γ^{-1}) in Sindh Province.

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

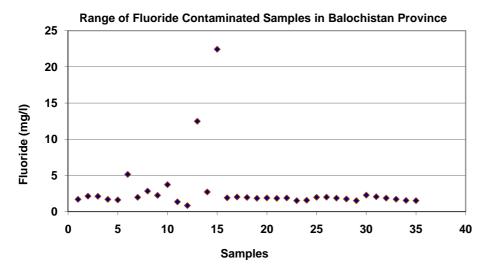
Conclusions

References

Tables

Figures

I∢



Printer-friendly Version

Fig. 5. Range of fluoride contaminated samples ($>1.5 \,\mathrm{mg}\,\mathrm{l}^{-1}$) in Balochistan Province.

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstrac

Introduction

Conclusion

References

Tables

Figures

Printer-friendly Version

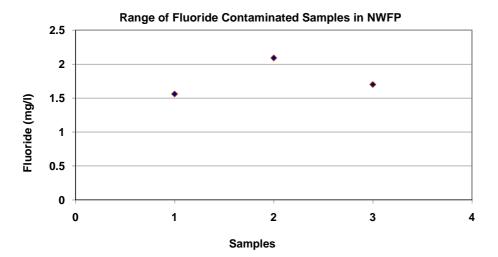


Fig. 6. Range of fluoride contaminated samples (>1.5 mg l⁻¹) in NWFP.

5, 495-514, 2012

Fluoride in the drinking water of Pakistan

M. A. Tahir and H. Rasheed

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

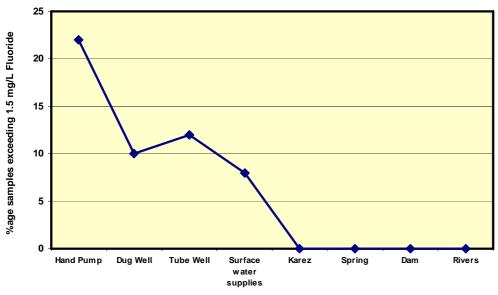
I◀

Full Screen / Es

Printer-friendly Version

14

5, 495-514, 2012


Fluoride in the

drinking water of

Pakistan

M. A. Tahir and H. Rasheed

Types of water sources monitored

Fig. 7. Distribution of fluoride in surface and groundwater sources.